# 6大学連携プロジェク

学際・国際的高度人材育成ライフイノベーションマテリアル創製共同研究プロジェクト(文部科学省)

**Publication contents** 

令和元年度「学際·国際的高度人材育成ライフイノベーション………1 マテリアル創製共同研究プロジェクト」の取り組みについて 令和元年度行事リスト 5 第3回公開討論会報告 5 令和元年度6大学連携プロジェクト研究課題…………6

> 学際·国際的高度人材育成 ライフイノベーションマテリアル創製 共同研究プロジェクト拠点

1.4 NO.

# 令和元年度「学際・国際的高度人材育成ライフイノベーション マテリアル創製共同研究プロジェクト」の取り組みについて



東京医科歯科大学 生体材料工学研究所 所長 宮原 裕二

1

第二期中期目標・中期計画期間中に推進した「特異構造金属・無機融合高機能材料開発共同研究プロジェクト」の成果を基盤として、平成28年度から本プロジェクトが発足しました。名古屋大学未来材料・システム研究所、東北大学金属材料研究所、東京工業大学フロンティア材料研究所、東京医科歯科大学生体材料工学研究所、早稲田大学ナノライフ理工学研究機構、大阪大学接合科学研究所の各研究所が有する特徴的な材料、得意技術を持ち寄って共同研究を推進し、環境・エネルギー材料、生体・医療・福祉材料など、人々の生活を支える生活革新材料(ライフイノベーションマテリアル)を創製する研究を行い、実用化を目指しています。また、本プロジェクトでは大学間の共同研究や国際連携を通して若手研究者・技術者の育成を行い、異分野横断的領域において産業の活性化を図り、社会への貢献を目指しています。

少子高齢化社会を迎え、国立大学及びその附置研究所を取り巻く環境は厳しさを増しています。附置 研究所の研究機能がこれまで以上に重要な役割を果たし、大学の機能強化に繋がることが求められて

います。本プロジェクトでは6大学6附置研究所がそれぞれ有する特色ある先端的な研究施設・装置を 相互に利用し、研究資源を有効活用しながら共同研究を推進します。厳しい環境の中、限られた研究資源を有効活用する共同研 究形態の構築は今後ますます重要になると考えられます。今までに得られた研究成果と培ってきた共同研究実績を基盤として、今 後ますます連携を強化して、今までの共同研究に加えて国際連携、人材育成も積極的に推進します。 関係の皆様のご支援、ご協力をよろしくお願い申し上げます。



●活性型人材交流 6大学間、民間企業、外国研究機関からの研究者の人材交換配置・民間企業の共同研究講座開設

6大学連携プロジェクト



### 組成傾斜シリコンゲルマニウムワイヤの 微小熱電デバイス化技術

モノのインターネット(Internet of Things: IoT)の爆発的普及には、電池なしで駆動する自立発電システムが理想といわれています。将来的にはトリリオンを超えるモノの接続が予想されており、電池交換のコストと時間が膨大になってしまうためです。本研究では、エネルギーの墓場ともいわれている200℃以下の熱を利用した環境発電(エネルギーハーベスト)技術開発に挑戦しています。熱電変換材料には、既存のシリコン集積回路プロセスとの親和性が高いシリコンゲルマニウムを用い、薄膜デバイスのシリコン基板上への混載(図1)や熱発電性能の検証(図2)を名古屋大学未来材料・システム研究所と早稲田大学ナノ・ライフ創新研究機構の共同で研究を進めています。特徴的な点は、結晶成長時に意図的にゲルマニウム偏析を生じさせ、シリコンゲルマニウムワイヤの長軸方向に組成傾斜を形成したことです。組成傾斜シリコンゲルマニウムワイヤのエネルギーバンド構造は、ワイヤ方向に対して傾斜的に変化するため、熱発電特性に影響を与えると予想しており、現在詳細を検討中です。p型/n型ドーピング制御、電極界面制御、熱回路設計などデバイス開発に向けて多くの課題が残されていますが、引き続き連携して解決していきたいと思っております。

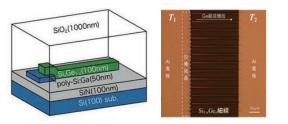



図1 シリコン基板上に形成した組成傾斜シリコンゲルマニウムワイヤの(左) 鳥瞰図と(右)微小熱電デバイスの光学顕微鏡像

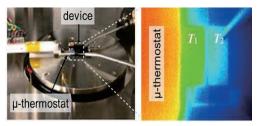



図2 (左)熱発電性能の検証様子と(右)顕微サーモグラフィ像



## レーザ照射を利用したNi基超合金の 一方向配向組織化

Ni基二重複相合金(Ni<sub>3</sub>Al(L1<sub>2</sub>構造)とNi<sub>3</sub>V(D0<sub>22</sub>)の2つの金属間化合物相からなる複相合金)は高温 での強度や硬さに優れた新しい高温構造用合金であり、耐熱用のボルトやボールベアリング、摩擦拡散接合 用ツールとして開発が進められている。高温構造用合金としてNi基二重複相合金の用途開発を拡大していく ためには、更なる強度向上に加えて靭性改善が重要課題である。本合金系では粒界破壊が課題であり、これ を解決するためには組織の単結晶化あるいは一方向配向化が有効な方策となる。

我々のグループではNi基二重複相合金の組織制御を効率的に実践する手法としてレーザ照射の適用に注 目した。多結晶Ni基二重複相合金試料(板状10x50x1.5mm<sup>3</sup>)にシングルモードファイバーレーザ(スポット 径0.5mm)をレーザ出力2kWで照射した。この時のパワー密度は1MW/mm<sup>2</sup>で、通常市販されているレー ザの100倍以上のパワー密度に相当する。スイープ速度100m/sとし、オーバーラップ率が10~90%となるよ うにビード間隔を0.45~0.05mmで10本レーザ照射した(ビード照射間隔は約1s)(Fig.1(a)(b))。その結果、 熱影響部ではレーザ照射の送り方向と垂直に一方向凝固した組織が発達した。特に、ビードのオーバーラップ 率が大きいほど、広い領域に結晶方位が揃った一方向凝固組織が生成しやすいことがわかった(Fig.1(c))。 これにより、レーザ照射条件を最適化すればNi基二重複相合金の大規模な一方向配向化が可能となること が示唆される。

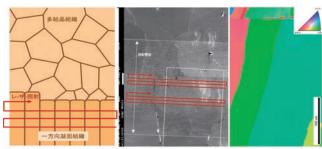



Fig.1: (a) レーザ照射により等軸多結晶組織材から一方向配向組織 材を作製するイメージ。(b) オーバーラップ率が90%でレーザ照射し た多結晶Ni基二重複相合金試料。(c) レーザ照射後のEBSD像。(b) 点線部に相当.レーザのスイープ方向と垂直に伸長した一方向配向 組織が発達。

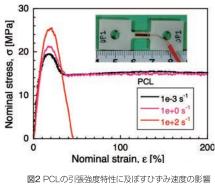


6大学連携プロジェクト

要素材料·

技術開発

分野


東京工業大学 フロンティア材料研究所

## スポーツ保護具用樹脂材料の 耐衝撃性能に関する研究

スポーツにおける顔面損傷後に競技への早期復帰を果たすための保護具として、フェイスガードの利用が 進められている。また、ラグビーやアメリカンフットボール、ボクシングなどの相手と接触するスポーツにおいて、 衝撃から競技者の歯や顎を保護するマウスガード(マウスピース)の着用が義務付けられている。これらの保 護具(図1)は競技者をケガから守る目的で利用されるが、その使用によって競技の妨げになることを抑えるた めに軽量化や柔軟性などを考慮して開発が進められている。本研究では、東京医科歯科大学と連携し、フェイ スガードやマウスガードに用いる熱可塑性樹脂について、それらを着用中に人体へ伝達する衝撃負荷の分散 性を解析可能な手法構築を目指している。これまでに、衝撃下での熱可塑性樹脂の機械的特性の把握に取 り組んだ。フェイスガードに用いる樹脂としてポリカプロラクトン(PCL)を、マウスガードに用いる樹脂としてエチ レン酢酸ビニル共重合体(EVA)を取り上げ、これらの引張強度特性のひずみ速度依存性を検力ブロック式 高速引張試験機で調査した。PCL材の公称応力ひずみ関係を図2に示すが、ひずみ速度が大きくなると流動 応力が高くなる傾向にあることがわかった。これはEVA材も同様であった。現在は、この特性を反映した衝撃 応答シミュレーションや樹脂材料への球体衝突実験による衝撃特性の評価を進めている。



図1 フェイスガードとマウスガード



### 新奇誘電体・超伝導体・半導体の探索

フロンティア材料研究所・平松研究室から、近年取り組んでいる新しい超伝導体・半導体の探索研究について紹介する(図1)。超伝導体では、世界初の水素ドープ鉄系超伝導体薄膜の合成に成功し、48ケルビンの超伝導臨界温度(T<sub>c</sub>)を達成(現在投稿中)すると共に、電気二重層トランジスタ(EDLT)構造を採用することでバルク体より約4倍高いT<sub>c</sub>=35ケルビンを得ることに成功した(PNAS 2016)。半導体では、LEDや太陽電池向けの新材料CaZn<sub>2</sub>N<sub>2</sub>(Nat. Commun. 2016, フロンティア材料研究所・大場研究室との共同研究)とSrHfS<sub>3</sub>(JACS 2019)を独自の手法で合成し、その化学設計指針の実効性を実験的に実証した。さらに、近年注目が集まっている半導体中の不純物「水素」の超高感度熱脱離分析装置を開発し(特許出願済2017)、現在、産学連携で実用化1号機の製作に取り組んでいる。今年度から、本6大学・6研究所連携プロジェクト研究の一環として、新たな取り組みとして、新誘電体探索にも着手し、機能性材料の探索研究の幅をより一層ひろげられるよう進めていく。

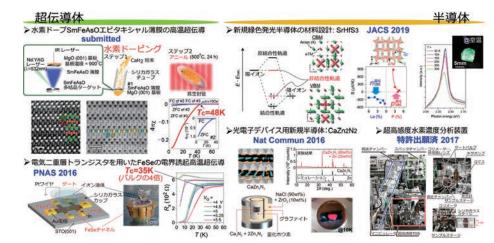



図1 平松研究室における超伝導体・半導体の探索研究

6大学連携プロジェクト



## カーボンナノチューブのプラズマ合成における ガス分解反応の真空紫外吸光分析

早稲田大学ナノ・ライフ創新研究機構では、名古屋大学未来材料・システム研究所と共同で尖端放電型リ モートプラズマ化学気相堆積(ARPCVD)装置を用いて長尺カーボンナノチューブ(CNT)の合成技術を開 発してきました。本ARPCVD装置においては、試料をプラズマの外側に配置しヒーターを用いて加熱すること により、プラズマ出力と合成温度を独立に制御することが可能です。今回、合成の高速化を図るべく、原料ガ スの分解により生成された化学種を真空紫外吸光法を用いて観測し、CNTの成長速度との相関を調査しま した。図1に示すように、Cラジカルのエネルギー緩和に由来する真空紫外発光(166nm)を、プラズマの外側 でありかつCNT合成領域の直上を通過させ分光器に入射させました。この領域では、プラズマにより分解・生 成された化学種が同真空紫外光を吸収するので、その強度を計測することによりガス分解の様子を探ること が出来ます。その結果、CNT合成に用いるメタン/水素を供給した際にはプラズマによりエチレンやビニルラ ジカルなどが生成され、同エチレン濃度とCNTフォレストの成長速度の間に強い相関があることを見出しまし た(図2)。これにより、ARPCVDによるCNTの高速合成には、このエチレンがさらに分解されて生ずるガス種 (ビニルラジカルなど)が重要であるとの知見を得ました。

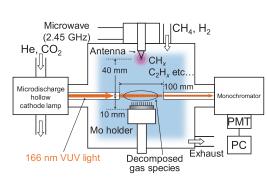
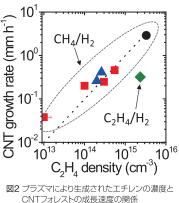




図1 尖端放電型リモートプラズマCVD装置における真空紫外吸光





究機

櫧

福祉材料 分野

### 深部がん温熱治療用窒化鉄微粒子の開発

現在、日本では、2人に1人ががんに罹患し、3人に1人ががんで亡くなるといわれています。深部がんの低侵 襲性治療法の一つとして、磁性温熱種を患部に導入し、体外から交流磁場を印加することによって患部を43 ~48℃に加温し、がん細胞のみを死滅させる温熱療法があります。これまでにマグネタイト(Fe3O4)に代表さ れる酸化鉄が磁性温熱種として検討されてきましたが、さらに高い発熱能を示す磁性温熱種の開発が望まれ ています。Fe16N2などの窒化鉄は酸化鉄よりも高い飽和磁化を示すため、高い発熱能を示す可能性がありま す。そこで我々は、これまで磁性温熱種として研究されてきたFe3O4ナノ粒子(MNPs)を還元・窒化処理する ことにより、温熱治療に適した窒化鉄ナノ粒子を得ることを目指しています。これまでに我々は、一次粒子径約 30nmのMNPsを還元・窒化処理することにより、一次粒子径40~50nmの主にFe16N2からなる窒化鉄ナノ 粒子を得ることに成功しています(図1)。また、300Oeの磁場下での磁気ヒステリシス曲線(図2)から推定さ れる、窒化鉄ナノ粒子の発熱能(20W/g)は出発原料のMNPsのそれ(17W/g)よりも高いことや、窒化鉄 ナノ粒子はMNPsとほぼ同等の細胞適合性を示すことを見出しています。今後は、実際の臨床現場で用いら れる交流磁場(100kHz.100~300Oe)の下での窒化鉄ナノ粒子の発熱特性や、同粒子のがんの温熱治療 効果を検証していく予定です。

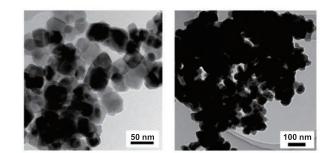



図1 MNPs(左)および窒化鉄ナノ粒子(右)のTEM写真

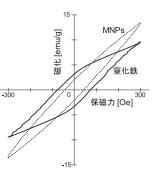



図2 3000eの磁場下でのMNPsおよび 窒化鉄ナノ粒子の磁気ヒステリシス曲線

2019年 ====

| <ul> <li>・4月22日<br/>要素材料・技術開発分野分科講演会 (東京工業大学)<br/>要素材料・技術開発分野分科分科会 (東京工業大学)</li> <li>・8月1日<br/>生体医療・福祉材料分野 研究会「積層造形技術開発と生体材料創製への応用展開」 (大阪大学接合科学研究所)</li> <li>・10月1日<br/>第7回 生体医療・福祉材料分野研究会<br/>講師:Huisuk Yun教授 (Korean Institute of Materials<br/>Science) (東京医科歯科大学)</li> <li>・10月2日<br/>2019年度東北大学金属材料研究所共同研究ワークショップ・<br/>日本バイオマテリアル学会東北ブロック講演会<br/>「バイオマテリアル研究を牽引する研究者との対話」(協賛)<br/>(東北大学金属材料研究所)</li> <li>・10月3日-4日<br/>国際会議<br/>The 4th International Symposium on Creation of Life<br/>Innovation Materials for Interdisciplinary and International<br/>Researcher Development(iLIM-4) in conjunction with 14th<br/>International Workshop on Biomaterials in Interface<br/>Science (GIMRT共催) (宮城県仙台市AER)</li> </ul> | <ul> <li>・10月3日<br/>第7回(令和元年度第1回) 6研連携運営協議会<br/>第9回 生体医療・福祉材料分野 代表者会議〈宮城県仙台市AER〉</li> <li>・10月12日-13日<br/>片平まつり2019 きんけん一般公開〈東北大金属材料研究所〉</li> <li>・10月31日<br/>ものづくり基礎講座「金属の魅力をみなおそう 機能編<br/>第1回 鉄鋼材料」(共催)〈クリエイション・コア東大阪〉</li> <li>・11月2日<br/>国際会議<br/>「International Symposium on Creation of Life Innovation<br/>Materials for Interdisciplinary and International Researcher<br/>Development Satellite(iLIM-s)(ICMaSS2019共催)</li></ul> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2020年 ==================================                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>・3月4日</li> <li>第8回 運営協議会</li> <li>第4回 運営協議会6大学連携プロジェクト公開討論会</li> <li>(東京ガーデンパレス)</li> <li>第10回 生体医療・福祉材料分野 代表者会議</li> <li>・3月</li> <li>令和元年度 年度末報告会</li> </ul>                                                                                                                                                                                                                                                                  |



### 第3回公開討論会

2019年3月5日(火)、東京工業大学すずかけ台大学会館にて第3回公開討論会を開催しました。幹事校であ る東京工業大学フロンティア材料研究所神谷所長の開会挨拶の後、大橋直樹先生(物質・材料研究機構(NIMS)) より「NIMSにおける機能性材料の開発」と題した基調講演が行われました。講演では高出力、高温、環境計測など をキーワードとしたNIMSにおける機能性材料研究開発に関する最先端の研究成果が紹介されました。6件の招待 講演では、宇尾基弘先生(東京医科歯科大学)、谷口博基先生(名古屋大学)、山中謙太先生(東北大学)、桐原聡 秀先生(大阪大学)、谷井孝至先生(早稲田大学)、加藤剛志先生(名古屋大学)から、当該プロジェクトの成果を含 む最新の研究内容について発表がありました。その後、当該プロジェクトで取り組む3分野(環境保全・持続可能材 料分野、生体医療・福祉材料分野、要素材料・技術開発分野)から、80件のポスター発表があり、今後の共同研究 の展開に向けた活発な意見交換が研究交流会まで引き続き行われました。参加者は98名を超え、第3回公開討論 会は成功裏に終了しました。







神谷所長開会挨拶

大橋先生基調講演

# 平成31年度6大学連携プロジェクト 各分野研究課題(抜粋)

### ○環境保全·接続可能材料分野 -

| ○環境保全・接続可能材料分野 ─────                                                                              |                               |
|---------------------------------------------------------------------------------------------------|-------------------------------|
| 1. 化学気相析出法を用いたアルミナ担持遷移金属触媒の                                                                       | )開発 1                         |
|                                                                                                   |                               |
| 2. アルミナ及びYSZ基板上へのCeO₂ナノ粒子層形成の<br>コロイド溶液プロセッシング (名大一東                                              |                               |
| 3. IV族混晶薄膜を用いた熱電デバイス開発     (名大一)                                                                  |                               |
| 4.酸化物ナノシートの誘電膜、絶縁膜応用 (名大一東                                                                        |                               |
| 5. 無機ナノシートのソフトアクチュエータ応用 (名大一                                                                      |                               |
| 6.酸化物ナノシートの熱制御材料への応用 (名大一                                                                         | - 早大) 19                      |
| 7.酸化処理したZr-Ce-Pd-Pt系金属ガラス触媒の                                                                      |                               |
| PM (すす) 燃焼活性 (名大一) (名大一) (名大一)                                                                    | 東北大) 20                       |
| 8. ZrPdPt系金属ガラスから作製した複合材の<br>水素吸蔵性と触媒活性 (名大一 東                                                    | ョ北大) 2                        |
| 9. 強磁性FeRh薄膜におけるスピン波伝播特性                                                                          |                               |
| (東北大一東工大一                                                                                         |                               |
| 10. ナノギャップ電極による環境触媒素反応の検出(東工大ー                                                                    | - 名大) 23                      |
| 11. 欠陥制御による新規アモルファス酸化物半導体の開発<br>(東工大                                                              | - (re+) 24                    |
| (米エヘー キヘー<br>12. フォノンドラッグ効果を利用した高性能熱電材料の開発                                                        |                               |
| (東工大一                                                                                             | 0                             |
| 13.計算科学に立脚した高機能・高環境調和性材料の設計・                                                                      | 探索                            |
| (東工大一                                                                                             | - 名大) 2                       |
| 14. 特徴的な電子構造により創発する革新的電子機能の開拓:<br>トポロジカル絶縁体、トポロジカル半金属、トポロジカル超                                     | <sub>伝道休</sub> 2 <sup>1</sup> |
| (東工大一早大一                                                                                          |                               |
|                                                                                                   |                               |
| ○生体医療・福祉材料分野                                                                                      |                               |
| 1.フェムト秒レーザを用いて細胞の分化と骨組織の                                                                          | 14                            |
| 石灰化誘導を促進する微細周期構造化金属表面を開発                                                                          |                               |
| (医科歯科大一阪大一位                                                                                       |                               |
| 2. 高次構造制御による抗菌性チタニアナノシートの最適<br>(医科歯科大一                                                            |                               |
| 3. 高速度カメラ・デジタル画像相関法を用いた炭素繊維強化熱可塑                                                                  |                               |
| フェイスガードの衝撃試験時至分布解析(医科歯科大一                                                                         |                               |
| 4. 心筋梗塞マウスモデルにおける、荷電水酸化アパタイト                                                                      |                               |
| 局所投与の心保護効果の検討(医科歯科大一愛                                                                             |                               |
| <ol> <li>Preparation of decellularized pericardium by va<br/>decellularization methods</li> </ol> | irious 1                      |
| (医科歯科大芝浦工大女子                                                                                      | <sup>2</sup> 医大) 20           |
| 6. 細胞選択的取り込みによるハイドロキシアパタイトの                                                                       |                               |
| 心筋細胞への遺伝子デリバリー(医科歯科大一の                                                                            | L                             |
| 7. ハイスルプットスクリーニング解析顕微鏡システムの<br>開発と応用 (医科歯科大一 商                                                    | 22                            |
| 8. ポリマー表面の親水化ならびにタンパク質吸着能評価                                                                       | 2:                            |
| (名大一東                                                                                             | 東北大) 2                        |
| 9. Co-Cr-Mo合金の電子ビーム積層造形と生体活性化表面処                                                                  |                               |
| (医科歯科大一 東北大一<br>10. PEEK樹脂への新しいHAコーティング法の開発 (東北大一                                                 |                               |
| 10. PEEK個個への初しいIAユーディング法の開発(東北人一<br>11. 生体用TNTZ合金の高酸素添加による                                        | - 名天) 2                       |
| 高強度・高延性化メカニズムの解明(東北大一阪大一                                                                          | -名大) 20                       |
| 12. 生体用β型Ti-Nb-O合金のミクロ構造と力学機能                                                                     |                               |
| (東北大— 阪大—                                                                                         | -名大) 2                        |
| 13. 電子ビーム積層造形で作成されたCo-Cr-Mo合金の           耐食性に関する研究                                                | ヨートーナ )                       |
|                                                                                                   | 216771                        |
|                                                                                                   |                               |
| ○要素材料・技術開発分野<br>1. 異なる密度をもつ流体の効率的混合方法の開発(名大−−                                                     | - 早大) 12                      |
| 2. 水素終端ダイヤモンド上に転写した                                                                               |                               |
| グラフェンの電子物性研究(名大一                                                                                  | - 早大) 13                      |
| 3. SiC上グラフェンへのダイヤモンドの                                                                             |                               |
| リモートエピタキシャル成長 (名大-<br>4. SiC上グラフェンの高周波FET測定 (名大-                                                  |                               |
| <ol> <li>4. SiC上グラフェンの高周波FET測定</li> <li>5. ゲルマニウムスズ薄膜のフォノンドラッグ熱電能に関する</li> </ol>                  |                               |
| 3.5元マニウムスス薄膜のフォノントラック熱電能に関す。                                                                      | 20120                         |
| 6 毎継十 バリートのセラミックフローティング (タナー                                                                      |                               |

- 6. 無機ナノシートのセラミックスコーティング (名大一阪大)
- 7. 組成傾斜Si1-xGex ワイヤの形成と熱電物性評価(名大-早大)
- 8. 新奇誘電体・超伝導体・半導体の探索と薄膜・デバイス化 (東工大一名大)
- 9. アニオン制御による機能性セラミックスの創成
- (東工大―東北大) 10.アモルファス酸化物半導体の欠陥起源解明と新規応用の開拓 (東工大―早大―阪大)
- 11. Mn-Bi電析膜の作製と磁気特性 (東北大一早大)

- 5. k-Al2O3型構造強誘電体薄膜の作製と構造評価(東工大--東北大)
- 6. 破壊誘起アモルファス化に起因する高靱化機構を示す 新規無機材料・金属材料の合成と評価 (東工大一東北大)
- 17. 分子状酸素を酸化剤とした選択酸化反応を可能とする 固体触媒の開発 (東工大一名大)
- 18. 高品質薄膜デバイスの低温形成に向けた
   プラズマプロセス技術の開発
   (阪大-東工大)
- 19. 環境用金属・セラミックスナノクリスタルの 高次構造制御と複合・集積化 (阪大一名大)
- 20. 反応性プラズマプロセスを用いた機能性酸窒化物薄膜の創成 (阪大一東工大)
- 21.3次元ナノポーラス材料を利用した高耐熱接合技術の構築 (阪大一早大)
- 22. コロイド分散系の微構造制御と外部刺激応答化(阪大一名大)
- 23. 粒界工学に基づく表面組織制御による粒界腐食抑制機構の調査 (阪大一東北大)
- 24. 核融合炉用先進高機能異材溶接・接合継手の 照射特性に関する基礎的研究 (阪大一東北大)
- 25. ワイドバンドギャップ半導体素子用 高性能・高信頼誘電体膜の開発 (名大一東工大一早大)
- 26. IGZOを用いた高性能・高信頼MIS型 電界効果トランジスタの開発 (東工大一名大一早大)
- 電気が効果すりシングシンの開発 27.ダイヤモンドを用いた高性能・高信頼素子および
- 同素子用基盤技術の開発(「早大一東工大一名大)
- 14. 生体用形状記憶合金の開発と機能評価 (東北大一東工大一阪大一 医科歯科大)
  15. セラミック人工歯の光造形アディティブ・マニュファクチャリング (阪大一東北大一 医科歯科大一名大)
  16. 生体用Ti-Nb系合金の力学的生体適合性に及ぼす酸素の影響 (東北大一 阪大一名大)
  17. Cr添加生体用低弾性率Ti-Nb合金の開発(東北大一 阪大一名大)
  - 18. 可視光応答型酸化チタンの開発および医療応用
    - (東北大一医科歯科大)
  - 9. 表面処理によるTi基インプラント合金の生体活性化と抗菌化
  - (東工大一東北大一阪大一 医科歯科大) 20. Mg合金表面への保護層形成による生分解性速度制御
    - (東工大一東北大一阪大一名大一医科歯科大)
  - 21. 自己修復型デンタルクラウンの研究開発(東工大— 医科歯科大) 22. プラスチック表面微細構造に依存した細胞挙動に関する研究
  - (阪大一 岡山大一 近畿大一 医科歯科大一 東工大) 23. 歯科用セラミック部材の精密アディティブ・マニュファクチャリング
- (阪大一東北大一 医科歯科大一 名大)
   24. 医療用金属・セラミックスナノクリスタルの 高次構造制御と特異接合
   (阪大一 医科歯科大)
- 25. 生体用途を指向したTi-6AI-4V/SUS316Lにおける

   異材摩擦圧接
   (阪大一 医科歯科大一 東北大)
- 26. スポーツ保護具に用いる熱可塑性樹脂材料の衝撃特性評価 (阪大一 医科歯科大)
- 27. 基板表面加工・改質を用いた神経細胞回路の構築と数理解析 (早大一東北大)
- 2. レーザ照射による機能性複相金属材料の組織制御 (東北大一阪大) 3. 熱インプリント加工による金属ガラスの熱伝導現象 (東北大一阪大) 4. レーザを用いたNi基超々合金の単結晶化に関する基礎研究 (阪大-東北大) 5. 摩擦攪拌プロセスを用いた組織改質による機能性向上 (阪大-東工大) 16. 局所塑性化および疲労性能に及ぼす介在物特性と (阪大一東北大) 加工誘起マルテンサイト変態の影 17. 異種材料間低温接合技術の研究 (早大一阪大一名大) 18. カーボン材料高性能化の研究 (早大一阪大) 19. ダイヤモンド超伝導を利用したAFMプローブの開発 (東工大--早大) 20. ダイヤモンドN-Vセンタを用いた2次元物質
- フォスフェレン31P核スピンの局所NMR観測(東工大一早大)
- 6

| ∋                                                              | 学際・国際的高度人材育成<br>イフイノベーションマテリアル<br>共同研究プロジェクト拠点                                                                                        | 創製                                                              |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 東北大学 金属材料研究所<br>東北大学 (片平キャンパス)                                 |                                                                                                                                       | 大学 フロンティア材料研究所                                                  |
| 〒980-8577 宮城県仙台市青葉I<br>URL http://www.imr.tohoku               | 区片平2-1-1 〒226-850                                                                                                                     | 3 神奈川県横浜市緑区長津田町4259<br>://www.msl.titech.ac.jp/                 |
| 大阪大学 接合科学研究所                                                   |                                                                                                                                       | ● 名古屋大学 未来材料・システム研究所                                            |
| 大阪大学 [吹田キャンパス]                                                 | 連絡先                                                                                                                                   | 名古屋大学 [東山キャンパス]                                                 |
| 〒567-0047 大阪府茨木市美穂ヶ丘11-1<br>URL http://www.jwri.osaka-u.ac.jp/ | 東京医科歯科大学<br>[生体材料工学研究所]                                                                                                               | 〒464-8603 愛知県名古屋市千種区不老町<br>URL http://www.imass.nagoya-u.ac.jp/ |
| 🔵 東京医科歯科大学 生体材料工学研究所 🗍                                         | 学際・国際的高度人材育成                                                                                                                          | 🦳 早稲田大学 ナノ・ライフ創新研究機構                                            |
| 東京医科歯科大学 [駿河台地区]                                               | ライフイノベーションマテリアル創製<br>共同研究プロジェクト拠点                                                                                                     | 早稲田大学 [早稲田キャンパス]                                                |
| 〒101-0062 東京都千代田区神田駿河台2-3-10<br>URL http://www.tmd.ac.jp/ibb/  | 〒101-0062 東京都千代田区神田駿河台2-3-1<br>Tel: 03 (5280) 8012 Fax: 03 (5280) 8006<br>URL http://www.tmd.ac.jp/ibb/<br>Email hanawa.met@tmd.ac.jp |                                                                 |