Our laboratory creates the innovative materials with conspicuous properties and functions through the interdisciplinary collaboration between inorganic materials, which are composed of various elements, and a wide range of different materials such as metals and organic materials. Our aims are the pursuit of scientific principles for innovative materials by uniting theories of different scientific fields, establishment of material science applicable to innovative materials based on extensive and new concepts, and contribution to the resolution of social problems including safety and environmental problems through the societal implementation of innovative materials. |
1: | Novel Machine Learning-based Cluster Analysis Method that Leverages Target Material Property - New cluster analysis technique for grouping materials based on both basic features and targeted properties - (Advanced Intelligent Systems(2024), DOI:10.1002/aisy.202400253) Oba Lab https://doi.org/10.1002/aisy.202400253 |
|
2: | Sustainable Catalysts: Crystal Phase-controlled Cobalt Nanoparticles for Hydrogenation - Researchers develop an energy efficient, reusable, and versatile catalytic system using abundant cobalt - (Journal of the American Chemical Society(2024), DOI:10.1021/jacs.4c04780) Hara-Ishikawa Lab https://doi.org/10.1021/jacs.4c04780 |
|
3: | Revolutionizing Memory Technology: Multiferroic Nanodots for Low-Power Magnetic Storage (ACS Applied Materials and Interfaces(2024), DOI:10.1021/acsami.4c01232) Azuma-Yamamoto Lab https://doi.org/10.1021/acsami.4c01232 |
|
4: | Novel Au-BiFeO3 Nanostructures for Efficient and Sustainable Degradation of Pollutants (ACS Applied Nano Materials(2024), DOI:10.1021/acsanm.4c01702) Sone-Chang Lab https://doi.org/10.1021/acsanm.4c01702 |
|
5: | From Defects to Order: Spontaneously Emerging Crystal Arrangements in Perovskite Halides (ACS Materials Letters(2024), DOI:10.1021/acsmaterialslett.3c01514) Azuma-Yamamoto Lab https://doi.org/10.1021/acsmaterialslett.3c01514 |
|
6: | Band Alignment of Oxides by Learnable Structural-Descriptor-Aided Neural Network and Transfer Learning (Journal of the American Chemical Society(2024), DOI:10.1021/jacs.3c13574) Oba Lab https://doi.org/10.1021/jacs.3c13574 |
|
7: | Au@Cu7S4 Yolk@Shell Nanocrystals Set New Hydrogen Production Activity Record under Visible and Near Infrared Irradiation (Nature Communications(2024), DOI:10.1038/s41467-023-44664-3) Sone-Chang Lab https://doi.org/10.1038/s41467-023-44664-3 |
|
8: | Novel Organic Light-Emitting Diode with Ultralow Turn-on Voltage for Blue Emission (Nature Communications, DOI:10.1038/s41467-023-41208-7) Majima-Izawa Lab https://doi.org/10.1038/s41467-023-41208-7 |
|
9: | Novel Lateral Data Storage: Two-Dimensional Ferroelectric Semiconductor Memory with a Bottom Contact 100 nm Channel Using In-Plane Polarization (Advanced Science, DOI:10.1002/advs.202303032) Majima-Izawa Lab https://doi.org/10.1002/advs.202303032 |
|
10: | New Insight for Stabilizing Halide Perovskite via Thiocyanate Substitution (Journal of American Chemical Society, DOI:10.1021/jacs.3c05390) Azuma-Yamamoto Lab https://doi.org/10.1021/jacs.3c05390 |
|
11: | A High-Pressure Flux Method to Synthesize High-Purity Oxyhydrides (Journal of American Chemical Society, DOI:10.1021/jacs.3c02240) Azuma-Yamamoto Lab https://doi.org/10.1021/jacs.3c02240 |
|
12: | Ultrafast quantum path interferometry to determine the electronic decoherence time of the electron-phonon coupled system in n-type gallium arsenide(Physical Review B, DOI:10.1103/PhysRevB.107.184305) Nakamura Lab https://doi.org/10.1103/PhysRevB.107.184305 |
|
13: | Facile Synthesis of High-Performance Perovskite Oxides for Acid–Base Catalysis (ACS Applied Materials & Interfaces, DOI:10.1021/acsami.3c01629) Kamata Lab https://doi.org/10.1021/acsami.3c01629 |
|
14: | Advanced X-Ray Technique Unveils Fast Solid-Gas Chemical Reaction Pathways (Advanced Science, DOI:10.1002/advs.202301876) Azuma-Yamamoto Lab https://doi.org/10.1002/advs.202301876 |
|
15: | Towards More Efficient and Eco-Friendly Thermoelectric Oxides with Hydrogen Substitution (Advanced Functional Materials, DOI:10.1002/adfm.202213144) Kamiya-Katase Lab https://doi.org/10.1002/adfm.202213144 |
|
16: | Breaking the Barrier: Low-Temp Ammonia Synthesis with Iron Catalysts and Barium Hydride (Journal of the American Chemical Society, DOI:10.1021/jacs.2c13015) Hara Lab https://doi.org/10.1021/jacs.2c13015 |
|
17: | Polar–Nonpolar Transition-Type Negative Thermal Expansion with 11.1% Volume Shrinkage by Design (Chemistry of Materials, DOI:10.1021/acs.chemmater.2c02304) Azuma-Yamamoto Lab https://doi.org/10.1021/acs.chemmater.2c02304 |
|
18: | Nanostructure-induced L10-ordering of twinned single-crystals in CoPt ferromagnetic nanowires (Nanoscale Advances, DOI:10.1039/D2NA00626J) Majima Lab https://doi.org/10.1039/D2NA00626J |
|
19: | Inexpensive, Reusable Mn Catalysts Make for Efficient Alkylation of Ketones With Alcohols (ACS Catalysis, DOI:10.1021/acscatal.2c03085) Hara-Kamata Lab https://doi.org/10.1021/acscatal.2c03085 |
|
20: | Synthesis and Aerobic Oxidation Catalysis of Mesoporous Todorokite-Type Manganese Oxide Nanoparticles by Crystallization of Precursors (Journal of the American Chemical Society, DOI:10.1021/jacs.2c02308) Hara-Kamata Lab https://doi.org/10.1021/jacs.2c02308 |
|
21: | Yolk-Shell Nanocrystals with Movable Gold Yolk: Next Generation of Photocatalysts (ACS Applied Nano Materials, DOI:10.1021/acsanm.2c01529) Sone-Chang Lab https://doi.org/10.1021/acsanm.2c01529 |
|
22: | Giant second harmonic transport under time-reversal symmetry in a trigonal superconductor (Nature Communications, DOI:10.1038/s41467-022-29314-4) Sasagawa Lab https://doi.org/10.1038/s41467-022-29314-4 |
|
23: | Electronic and lattice thermal conductivity switching by 3D−2D crystal structure transition in non-equilibrium (Pb1-xSnx)Se (Advanced Electronic Materials, DOI:10.1002/aelm.202200024) Kamiya-Katase Lab https://doi.org/10.1002/aelm.202200024 |
|
24: | Degenerated Hole Doping and Ultra-Low Lattice Thermal Conductivity in Polycrystalline SnSe by Nonequilibrium Isovalent Te Substitution (Advanced Science, DOI:10.1002/advs.202105958) Kamiya-Katase Lab https://doi.org/10.1002/advs.202105958 |
|
25: | Unveiling a Chemisorbed Crystallographically Heterogeneous Graphene/L10-FePd Interface with a Robust and Perpendicular Orbital Moment(ACS Nano, DOI:10.1021/acsnano.1c09843) Yasui Lab https://doi.org/10.1021/acsnano.1c09843 |
|
26: | Reusable Catalyst Makes C–H Bond Oxidation Using Oxygen Easier and More Efficient(ACS Applied Materials & Interfaces, DOI:10.1021/acsami.1c20080) Hara-Kamata Lab https://doi.org/10.1021/acsami.1c20080 |
|
27: | Boosting Thermopower of Oxides via Artificially laminated Metal/Insulator Heterostructure(Nano Letters, DOI:10.1021/acs.nanolett.1c03143) Kamiya-Katase Lab https://doi.org/10.1021/acs.nanolett.1c03143 |
|
28: | Breaking of thermopower–conductivity trade-off in LaTiO3 film around Mott insulator to metal transition(Advanced Science, DOI:10.1002/advs.202102097) Kamiya-Katase Lab https://doi.org/10.1002/advs.202102097 |
|
29: | Quantum Spin Fluctuations and Hydrogen Bond Network in the Antiferromagnetic Natural Mineral Henmilite(Physical Review Materials, DOI:10.1103/PhysRevMaterials.5.104405) Azuma-Yamamoto Lab https://doi.org/10.1103/PhysRevMaterials.5.104405 |
|
30: | Theory for coherent control of longitudinal optical phonons in GaAs using polarized optical pulses with relative phase locking(Physical Review B, DOI:10.1103/PhysRevB.104.134301) Nakamura Lab https://doi.org/10.1103/PhysRevB.104.134301 |
|
31: | Study Explores Remarkable Negative Thermal Expansion Seen in Layered Ruthenates (Chemistry of Materials, DOI:10.1021/acs.chemmater.1c01619) Azuma-Yamamoto Lab https://doi.org/10.1021/acs.chemmater.1c01619 |
|
32: | 20-nm-Nanogap oxygen gas sensor with solution-processed cerium oxide (Sensors & Actuators: B. Chemical, DOI:10.1016/j.snb.2021.130098) Majima Lab https://doi.org/10.1016/j.snb.2021.130098 |
|
33: | Dielectric response of BaTiO3 electronic states under AC fields via microsecond time-resolved X-ray absorption spectroscopy(Acta Materialia 207, 116681 (2021), DOI:10.1016/j.actamat.2021.116681) Kobayashi Lab https://doi.org/10.1016/j.actamat.2021.116681 |
|
34: | New Approach in Organic-Inorganic Hybrid Materials: Control of Crystal Chirality for Opto-Spintronics Applications (Advanced Materials; DOI:10.1002/adma.202008611) Sasagawa Lab https://doi.org/10.1002/adma.202008611 |
|
35: | Observation of novel charge ordering and spin reorientation in perovskite oxide PbFeO3(Nature Communications (2021),DOI:10.1038/s41467-021-22064-9) Das Lab, Azuma-Yamamoto Lab https://doi.org/10.1038/s41467-021-22064-9 |
|
36: | Reversible 3D-2D structural phase transition and giant electronic modulation in nonequilibrium alloy semiconductor, lead-tin-selenide(Science Advances,DOI:10.1126/sciadv.abf2725) Kamiya-Katase Lab https://doi.org/10.1126/sciadv.abf2725 |
|
37: | Angular optimization for cancer identification with circularly polarized light(Journal of Biophotonics,DOI:10.1002/jbio.202000380) Munekata Lab https://doi.org/10.1002/jbio.202000380 |
|
38: | Efficient Oxygen Evolution Electrocatalysis on CaFe2O4 and Its Reaction Mechanism(ACS Applied Energy Materials, DOI:10.1021/acsaem.0c02710) Hara-Kamata Lab https://doi.org/10.1021/acsaem.0c02710 |
|
39: | Structure and properties of densified silica glass: characterizing the order within disorder(NPG Asia Materials, DOI:10.1038/s41427-020-00262-z) Kawaji Lab https://doi.org/10.1038/s41427-020-00262-z |
|
40: | First Demonstration of a Higher-Order Topological Insulator built from Atomic Layers (Nature Materials; DOI:10.1038/s41563-020-00871-7) Sasagawa Lab https://doi.org/10.1038/s41563-020-00871-7 |
|
41: | Double Charge Polarity Switching in Sb‐Doped SnSe with Switchable Substitution Sites(Advanced Functional Materials, DOI:10.1002/adfm.202008092) Kamiya-Katase Lab https://doi.org/10.1002/adfm.202008092 |
|
42: | Site-specific spectroscopic measurement of spin and charge in (LuFeO3)m/(LuFe2O4)1 multiferroic superlattices (Nature Communications(2020), DOI:10.1038/s41467-020-19285-9) Das Lab. https://doi.org/10.1038/s41467-020-19285-9 |
|
43: | Strain-induced creation and switching of anion vacancy layers in perovskite oxynitrides (Nature Communications, DOI:10.1038/s41467-020-19217-7) Azuma-Yamamoto Lab https://doi.org/10.1038/s41467-020-19217-7 |
|
44: | Quantum transport evidence of Weyl fermions in an epitaxial ferromagnetic oxide (Nature Communications (2020), DOI:10.1038/s41467-020-18646-8) Das Lab https://doi.org/10.1038/s41467-020-18646-8 |
|
45: | Effects of ruthenium hydride species on primary amine synthesis by direct amination of alcohols over a heterogeneous Ru catalyst (Chemical Science, DOI:10.1039/D0SC03858J) Hara-Kamata Lab https://doi.org/10.1039/D0SC03858J |
|
46: | Detection of boson peak and fractal dynamics of disordered systems using terahertz spectroscopy (Physical Review E, DOI:10.1103/PhysRevE.102.022502) Kawaji Lab https://doi.org/10.1103/PhysRevE.102.022502 |
|
47: | Design and formation of SiC (0001)/SiO2 interfaces via Si deposition followed by low-temperature oxidation and high-temperature nitridation(Applied Physics Express, DOI:10.35848/1882-0786/ababed) Matsuahita Lab https://doi.org/10.35848/1882-0786/ababed |
|
48: | Template-Free Synthesis of Mesoporous β-MnO2 Nanoparticles: Structure, Formation Mechanism, and Catalytic Properties (ACS Applied Materials & Interfaces; DOI:10.1021/acsami.0c08043) Hara-Kamata Lab https://doi.org/10.1021/acsami.0c08043 |
|
49: | Pair-Density-Wave in Charge/Spin-ordered High-Tc Cuprates (Nature Commun. 11, 3323 (2020); DOI:10.1038/s41467-020-17138-z) Sasagawa Lab https://doi.org/10.1038/s41467-020-17138-z |
|
50: | Coherent control of 40-THz optical phonons in diamond using femtosecond optical pulses (Physical Review B DOI:10.1103/PhysRevB.101.174301)Nakamura Lab. https://doi.org/10.1103/PhysRevB.101.174301 |
|
51: | High mobility approaching the intrinsic limit in Ta-doped SnO2 films epitaxially grown on TiO2 (001) substrates (Scientific Reports DOI:10.1038/s41598-020-63800-3)Azuma-Yamamato Lab. https://doi.org/10.1038/s41598-020-63800-3 |
|
52: | Fuelling the World Sustainably: Synthesizing Ammonia using Less Energy(Nature Communications DOI:10.1038/s41467-020-15868-8)Hara-Kamata Lab. https://doi.org/10.1038/s41467-020-15868-8 |
|
53: | Sequential Spin State Transition and Intermetallic Charge Transfer in PbCoO3(Journal of the American Chemical Society DOI:10.1021/jacs.9b13508)Azuma Lab. https://doi.org/10.1021/jacs.9b13508 |
|
54: | Radial Spin Texture in Elemental Tellurium with Chiral Crystal Structure(Physical Review Letters DOI:10.1103/PhysRevLett.124.136404)Sasagawa Lab. https://doi.org/10.1103/PhysRevLett.124.136404 |
|
55: | Ferroelectric BaTaO2N Crystals Grown in a BaCN2 Flux (Inorganic Chemistry DOI:10.1021/acs.inorgchem.9b02917)Itoh Lab. https://doi.org/10.1021/acs.inorgchem.9b02917 |
|
56: | Enhanced Negative Thermal Expansion Induced by Simultaneous Charge Transfer and Polar–Nonpolar Transitions(Journal of the American Chemical Society DOI:10.1021/jacs.9b10336)Azuma-Yamamoto Lab. https://doi.org/10.1021/jacs.9b10336 |
|
57: | Strain Manipulation of Magnetic Anisotropy in Room-Temperature Ferrimagnetic Quadruple Perovskite CeCu3Mn4O12(Applied Electronic Materials DOI:10.1021/acsaelm.9b00547)Azuma-Yamamoto Lab. https://doi.org/10.1021/acsaelm.9b00547 |
|
58: | Electronic structure of interstitial hydrogen in In-Ga-Zn-O semiconductor simulated by muon(Applied Physics Letters DOI:10.1063/1.5117771)Kamiya-Katase Lab. https://doi.org/10.1063/1.5117771 |
|
59: | 3D multiscale-imaging of processing-induced defects formed during sintering of hierarchical powder packings(Scientific Reports DOI:10.1038/s41598-019-48127-y)Wakai-Nishiyama Lab. https://doi.org/10.1038/s41598-019-48127-y |
|
60: | Observation of Majorana Quasiparticles in Topological Superconducting Vortices (Nature Materials 18, 811 (2019).; DOI:10.1038/s41563-019-0397-1) Sasagawa Lab https://doi.org/10.1038/s41563-019-0397-1 |
|
61: | Exicitonic Effect (Doublon-holon Pairing) in Strongly Correlated Cuprates (Science Advances 5, eaav2187 (2019); 10.1126/sciadv.aav2187) Sasagawa Lab https://doi.org/10.1126/sciadv.aav2187 |
|
62: | Polar–Nonpolar Phase Transition Accompanied by Negative Thermal Expansion in Perovskite-Type Bi1–xPbxNiO3(Chemistry of Materials(2019), DOI:10.1021/acs.chemmater.9b00929) Azuma Lab https://doi.org/10.1021/acs.chemmater.9b00929 |
|
63: | Microstructural deformation process of shock-compressed polycrystalline aluminum (Scientific Reports(2019), DOI:10.1038/s41598-019-43876-2) Nakamura Lab https://doi.org/10.1038/s41598-019-43876-2 |
|
64: | A light matter: understanding the Raman dance of solids(Physical Review B, Rapid Communication(2019), DOI:10.1103/PhysRevB.99.180301) Nakamura Lab https://doi.org/10.1103/PhysRevB.99.180301 |
|
65: | Material Design of Green-Light-Emitting Semiconductors: Perovskite-Type Sulfide SrHfS3(Journal of the American Chemical Society, DOI:10.1021/jacs.8b13622) Hiramatsu Lab https://doi.org/10.1021/jacs.8b13622 |
|
66: | Melting of dxy Orbital Ordering Accompanied by Suppression of Giant Tetragonal Distortion and Insulator-to-Metal Transition in Cr-Substituted PbVO3 (Chemistry of Materials, DOI:10.1021/acs.chemmater.8b04680)Azuma Lab https://pubs.acs.org/doi/10.1021/acs.chemmater.... |
|
67: | Enhancement of Ultrahigh Rate Chargeability by Interfacial Nanodot BaTiO3 Treatment on LiCoO2 Cathode Thin Film Batteries (Nanoletters,DOI:10.1021/acs.nanolett.8b04690) Itoh Lab https://pubs.acs.org/doi/abs/10.1021%2Facs.nano... |
|
68: | Discovery of a "Weak" Topological Insulator with Switching-ability (Nature 566, 518 (2019); DOI:10.1038/s41586-019-0927-7) Sasagawa Lab https://www.nature.com/articles/s41586-019-0927-7 |
|
69: | Direct Observation of Magnetization Reversal by Electric Field at Room Temperature in Co-Substituted Bismuth Ferrite Thin Film (Nano Letters; DOI: 10.1021/acs.nanolett.8b04765) Azuma Lab, Oba Lab https://pubs.acs.org/doi/10.1021/acs.nanolett.8... |
|
70: | Barium ruthenate:Green catalysts with Earth-abundant metals accelerate production of bio-based plastic (Journal of the American Chemical Society; DOI:10.1021/jacs.8b09917) Hara-Kamata Lab https://pubs.acs.org/doi/10.1021/jacs.8b09917 |
|
71: | Emergence of Superconductivity in the Cuprates via a Universal Percolation Process (Nature Communications 9, 4327 (2018); DOI: 10.1038/s41467-018-06707-y) Sasagawa Lab https://www.nature.com/articles/s41467-018-06707-y |
|
72: | Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides (ACS Applied Materials & Interfaces; DOI:10.1021/acsami.8b05343) Hara-Kamata Lab https://pubs.acs.org/doi/10.1021/acsami.8b05343 |
|
73: | A high performance catalyst of shape-specific ruthenium nanoparticles for production of primary amines by reductive amination of carbonyl compounds (Chemical Science; DOI:10.1039/C8SC01197D) Hara-Kamata Lab http://pubs.rsc.org/en/Content/ArticleLanding/2... |
|
74: | Control of quantum state of optical phonon in diamond induced by ultrashort light pulses (Scientific Reports; DOI: 10.1038/s41598-018-27734-1 ) Nakamura Lab https://www.nature.com/articles/s41598-018-27734-1 |
|
75: | High‐Mobility p‐Type and n‐Type Copper Nitride Semiconductors by Direct Nitriding Synthesis and In Silico Doping Design (Advanced Materials; DOI: 10.1002/adma.201801968) Hosono-Hiramatsu Lab, Oba Lab https://onlinelibrary.wiley.com/doi/abs/10.1002... |
|
76: | Colossal Negative Thermal Expansion in Electron‐Doped PbVO3 Perovskites (Angewandte Chemie International Edition; DOI:10.1002/anie.201804082) Azuma Lab https://onlinelibrary.wiley.com/doi/abs/10.1002... |
|
77: | Ubiquitous formation of bulk Dirac cones and topological surface states from a single orbital manifold in transition-metal dichalcogenides(Nature Materials 17, 21 (2018); DOI:10.1038/NMAT5031) Sasagawa Lab http://www.nature.com/articles/nmat5031 |
|
78: | Ferroelectric and Magnetic Properties in Room-Temperature Multiferroic GaxFe2−xO3 Epitaxial Thin Films(Advanced Functional Materials, 27, 1704789(2017), DOI:10.1002/adfm.201704789) Ito-Taniyama Lab http://onlinelibrary.wiley.com/doi/10.1002/adfm... |
|
79: | Full-gap superconductivity in spin-polarised surface states of topological semimetal β-PdBi2 (Nature Communications 8, 976 (2017); DOI:10.1038/s41467-017-01209-9) Sasagawa Lab https://www.nature.com/articles/s41467-017-01209-9 |
|
80: | Electronic Effect of Ruthenium Nanoparticles on Efficient Reductive Amination of Carbonyl Compounds(Journal of the American Chemical Society;10.1021/jacs.7b04481) Hara-Kamata Lab http://pubs.acs.org/doi/abs/10.1021/jacs.7b04481 |
|
81: | Superconductivity in Alkaline Earth Metal-Filled Skutterudites BaxIr4X12 (X = As, P),(J. Am. Chem. Soc., , 139 (24), 8106–8109(2017)) Hosono Lab http://pubs.acs.org/doi/abs/10.1021/jacs.7b04274 |
|
82: | A-Site and B-Site Charge Orderings in an s–d Level Controlled Perovskite Oxide PbCoO3 (Journal of the American Chemical Society; 10.1021/jacs.7b01851) Azuma Lab http://pubs.acs.org/doi/abs/10.1021/jacs.7b01851 |
|
83: | Transparent ceramics make super-hard windows(Scientific Reports, 2017; 10.1038/srep44755) Wakai & Nishiyama Lab http://www.nature.com/articles/srep44755 |
|
84: | A bifunctional cerium phosphate catalyst for chemoselective acetalization(Chemical Science; DOI:10.1039/C6SC05642C) Hara&Kamata Lab http://pubs.rsc.org/en/Content/ArticleLanding/2... |
|
85: | New material with ferroelectricity and ferromagnetism may lead to better computer memory(Advanced Materials, 2016) Azuma Lab http://onlinelibrary.wiley.com/doi/10.1002/adma... |
|
86: | Enhanced Piezoelectric Response due to Polarization Rotation in Cobalt-Substituted BiFeO3 Epitaxial Thin Films (Advanced Materials, 2016) Azuma Lab http://onlinelibrary.wiley.com/doi/10.1002/adma... |
|
87: | Discovery of earth-abundant nitride semiconductors by computational screening and high-ressure synthesis (Nature Communications, 2016) Oba Lab, Hosono-Kamiya-Hiramatsu Lab http://dx.doi.org/10.1038/ncomms11962 |
|
88: | Four times higher superconducting critical temperature of iron selenide(Proc. Natl. Acad. Sci. USA, Early Edition (2016)) Hosono, Kamiya, Hiramatsu Lab http://dx.doi.org/10.1073/pnas.1520810113 |
|
89: | Precisely Determining the Zeeman g-factor of Topological Surface Electrons (Nature Communications 7, 10829 (2016); doi:10.1038/ncomms10829)Sasagawa Lab http://www.nature.com/ncomms/2016/160224/ncomms... |
Copyright(c) 2020 Materials & Structures Laboratory, Tokyo Institute of Technology. All Rights Reserved.