Top Page » Research Results

Research Results

1: Revolutionizing Memory Technology: Multiferroic Nanodots for Low-Power Magnetic Storage (ACS Applied Materials and Interfaces(2024), DOI:10.1021/acsami.4c01232) Azuma-Yamamoto Lab
https://doi.org/10.1021/acsami.4c01232

2: Novel Au-BiFeO3 Nanostructures for Efficient and Sustainable Degradation of Pollutants (ACS Applied Nano Materials(2024), DOI:10.1021/acsanm.4c01702) Sone-Chang Lab
https://doi.org/10.1021/acsanm.4c01702

3: From Defects to Order: Spontaneously Emerging Crystal Arrangements in Perovskite Halides (ACS Materials Letters(2024), DOI:10.1021/acsmaterialslett.3c01514) Azuma-Yamamoto Lab
https://doi.org/10.1021/acsmaterialslett.3c01514

4: Band Alignment of Oxides by Learnable Structural-Descriptor-Aided Neural Network and Transfer Learning (Journal of the American Chemical Society(2024), DOI:10.1021/jacs.3c13574) Oba Lab
https://doi.org/10.1021/jacs.3c13574

5: Au@Cu7S4 Yolk@Shell Nanocrystals Set New Hydrogen Production Activity Record under Visible and Near Infrared Irradiation (Nature Communications(2024), DOI:10.1038/s41467-023-44664-3) Sone-Chang Lab
https://doi.org/10.1038/s41467-023-44664-3

6: Novel Organic Light-Emitting Diode with Ultralow Turn-on Voltage for Blue Emission (Nature Communications, DOI:10.1038/s41467-023-41208-7) Majima-Izawa Lab
https://doi.org/10.1038/s41467-023-41208-7

7: Novel Lateral Data Storage: Two-Dimensional Ferroelectric Semiconductor Memory with a Bottom Contact 100 nm Channel Using In-Plane Polarization (Advanced Science, DOI:10.1002/advs.202303032) Majima-Izawa Lab
https://doi.org/10.1002/advs.202303032

8: New Insight for Stabilizing Halide Perovskite via Thiocyanate Substitution (Journal of American Chemical Society, DOI:10.1021/jacs.3c05390) Azuma-Yamamoto Lab
https://doi.org/10.1021/jacs.3c05390

9: A High-Pressure Flux Method to Synthesize High-Purity Oxyhydrides (Journal of American Chemical Society, DOI:10.1021/jacs.3c02240) Azuma-Yamamoto Lab
https://doi.org/10.1021/jacs.3c02240

10: Ultrafast quantum path interferometry to determine the electronic decoherence time of the electron-phonon coupled system in n-type gallium arsenide(Physical Review B, DOI:10.1103/PhysRevB.107.184305) Nakamura Lab
https://doi.org/10.1103/PhysRevB.107.184305

11: Facile Synthesis of High-Performance Perovskite Oxides for Acid–Base Catalysis (ACS Applied Materials & Interfaces, DOI:10.1021/acsami.3c01629) Kamata Lab
https://doi.org/10.1021/acsami.3c01629

12: Advanced X-Ray Technique Unveils Fast Solid-Gas Chemical Reaction Pathways (Advanced Science, DOI:10.1002/advs.202301876) Azuma-Yamamoto Lab
https://doi.org/10.1002/advs.202301876

13: Towards More Efficient and Eco-Friendly Thermoelectric Oxides with Hydrogen Substitution (Advanced Functional Materials, DOI:10.1002/adfm.202213144) Kamiya-Katase Lab
https://doi.org/10.1002/adfm.202213144

14: Breaking the Barrier: Low-Temp Ammonia Synthesis with Iron Catalysts and Barium Hydride (Journal of the American Chemical Society, DOI:10.1021/jacs.2c13015) Hara Lab
https://doi.org/10.1021/jacs.2c13015

15: Polar–Nonpolar Transition-Type Negative Thermal Expansion with 11.1% Volume Shrinkage by Design (Chemistry of Materials, DOI:10.1021/acs.chemmater.2c02304) Azuma-Yamamoto Lab
https://doi.org/10.1021/acs.chemmater.2c02304

16: Nanostructure-induced L10-ordering of twinned single-crystals in CoPt ferromagnetic nanowires (Nanoscale Advances, DOI:10.1039/D2NA00626J) Majima Lab
https://doi.org/10.1039/D2NA00626J

17: Inexpensive, Reusable Mn Catalysts Make for Efficient Alkylation of Ketones With Alcohols (ACS Catalysis, DOI:10.1021/acscatal.2c03085) Hara-Kamata Lab
https://doi.org/10.1021/acscatal.2c03085

18: Synthesis and Aerobic Oxidation Catalysis of Mesoporous Todorokite-Type Manganese Oxide Nanoparticles by Crystallization of Precursors (Journal of the American Chemical Society, DOI:10.1021/jacs.2c02308) Hara-Kamata Lab
https://doi.org/10.1021/jacs.2c02308

19: Yolk-Shell Nanocrystals with Movable Gold Yolk: Next Generation of Photocatalysts (ACS Applied Nano Materials, DOI:10.1021/acsanm.2c01529) Sone-Chang Lab
https://doi.org/10.1021/acsanm.2c01529

20: Giant second harmonic transport under time-reversal symmetry in a trigonal superconductor (Nature Communications, DOI:10.1038/s41467-022-29314-4) Sasagawa Lab
https://doi.org/10.1038/s41467-022-29314-4

21: Electronic and lattice thermal conductivity switching by 3D−2D crystal structure transition in non-equilibrium (Pb1-xSnx)Se (Advanced Electronic Materials, DOI:10.1002/aelm.202200024) Kamiya-Katase Lab
https://doi.org/10.1002/aelm.202200024

22: Degenerated Hole Doping and Ultra-Low Lattice Thermal Conductivity in Polycrystalline SnSe by Nonequilibrium Isovalent Te Substitution (Advanced Science, DOI:10.1002/advs.202105958) Kamiya-Katase Lab
https://doi.org/10.1002/advs.202105958

23: Unveiling a Chemisorbed Crystallographically Heterogeneous Graphene/L10-FePd Interface with a Robust and Perpendicular Orbital Moment(ACS Nano, DOI:10.1021/acsnano.1c09843) Yasui Lab
https://doi.org/10.1021/acsnano.1c09843

24: Reusable Catalyst Makes C–H Bond Oxidation Using Oxygen Easier and More Efficient(ACS Applied Materials & Interfaces, DOI:10.1021/acsami.1c20080) Hara-Kamata Lab
https://doi.org/10.1021/acsami.1c20080

25: Boosting Thermopower of Oxides via Artificially laminated Metal/Insulator Heterostructure(Nano Letters, DOI:10.1021/acs.nanolett.1c03143) Kamiya-Katase Lab
https://doi.org/10.1021/acs.nanolett.1c03143

26: Breaking of thermopower–conductivity trade-off in LaTiO3 film around Mott insulator to metal transition(Advanced Science, DOI:10.1002/advs.202102097) Kamiya-Katase Lab
https://doi.org/10.1002/advs.202102097

27: Quantum Spin Fluctuations and Hydrogen Bond Network in the Antiferromagnetic Natural Mineral Henmilite(Physical Review Materials, DOI:10.1103/PhysRevMaterials.5.104405) Azuma-Yamamoto Lab
https://doi.org/10.1103/PhysRevMaterials.5.104405

28: Theory for coherent control of longitudinal optical phonons in GaAs using polarized optical pulses with relative phase locking(Physical Review B, DOI:10.1103/PhysRevB.104.134301) Nakamura Lab
https://doi.org/10.1103/PhysRevB.104.134301

29: Study Explores Remarkable Negative Thermal Expansion Seen in Layered Ruthenates (Chemistry of Materials, DOI:10.1021/acs.chemmater.1c01619) Azuma-Yamamoto Lab
https://doi.org/10.1021/acs.chemmater.1c01619

30: 20-nm-Nanogap oxygen gas sensor with solution-processed cerium oxide (Sensors & Actuators: B. Chemical, DOI:10.1016/j.snb.2021.130098) Majima Lab
https://doi.org/10.1016/j.snb.2021.130098

31: Dielectric response of BaTiO3 electronic states under AC fields via microsecond time-resolved X-ray absorption spectroscopy(Acta Materialia 207, 116681 (2021), DOI:10.1016/j.actamat.2021.116681) Kobayashi Lab
https://doi.org/10.1016/j.actamat.2021.116681

32: New Approach in Organic-Inorganic Hybrid Materials: Control of Crystal Chirality for Opto-Spintronics Applications (Advanced Materials; DOI:10.1002/adma.202008611) Sasagawa Lab
https://doi.org/10.1002/adma.202008611

33: Observation of novel charge ordering and spin reorientation in perovskite oxide PbFeO3(Nature Communications (2021),DOI:10.1038/s41467-021-22064-9) Das Lab, Azuma-Yamamoto Lab
https://doi.org/10.1038/s41467-021-22064-9

34: Reversible 3D-2D structural phase transition and giant electronic modulation in nonequilibrium alloy semiconductor, lead-tin-selenide(Science Advances,DOI:10.1126/sciadv.abf2725) Kamiya-Katase Lab
https://doi.org/10.1126/sciadv.abf2725

35: Angular optimization for cancer identification with circularly polarized light(Journal of Biophotonics,DOI:10.1002/jbio.202000380) Munekata Lab
https://doi.org/10.1002/jbio.202000380

36: Efficient Oxygen Evolution Electrocatalysis on CaFe2O4 and Its Reaction Mechanism(ACS Applied Energy Materials, DOI:10.1021/acsaem.0c02710) Hara-Kamata Lab
https://doi.org/10.1021/acsaem.0c02710

37: Structure and properties of densified silica glass: characterizing the order within disorder(NPG Asia Materials, DOI:10.1038/s41427-020-00262-z) Kawaji Lab
https://doi.org/10.1038/s41427-020-00262-z

38: First Demonstration of a Higher-Order Topological Insulator built from Atomic Layers (Nature Materials; DOI:10.1038/s41563-020-00871-7) Sasagawa Lab
https://doi.org/10.1038/s41563-020-00871-7

39: Double Charge Polarity Switching in Sb‐Doped SnSe with Switchable Substitution Sites(Advanced Functional Materials, DOI:10.1002/adfm.202008092) Kamiya-Katase Lab
https://doi.org/10.1002/adfm.202008092

40: Site-specific spectroscopic measurement of spin and charge in (LuFeO3)m/(LuFe2O4)1 multiferroic superlattices
(Nature Communications(2020), DOI:10.1038/s41467-020-19285-9) Das Lab.
https://doi.org/10.1038/s41467-020-19285-9

41: Strain-induced creation and switching of anion vacancy layers in perovskite oxynitrides (Nature Communications, DOI:10.1038/s41467-020-19217-7) Azuma-Yamamoto Lab
https://doi.org/10.1038/s41467-020-19217-7

42: Quantum transport evidence of Weyl fermions in an epitaxial ferromagnetic oxide (Nature Communications (2020), DOI:10.1038/s41467-020-18646-8) Das Lab
https://doi.org/10.1038/s41467-020-18646-8

43: Effects of ruthenium hydride species on primary amine synthesis by direct amination of alcohols over a heterogeneous Ru catalyst (Chemical Science, DOI:10.1039/D0SC03858J) Hara-Kamata Lab
https://doi.org/10.1039/D0SC03858J

44: Detection of boson peak and fractal dynamics of disordered systems using terahertz spectroscopy (Physical Review E, DOI:10.1103/PhysRevE.102.022502) Kawaji Lab
https://doi.org/10.1103/PhysRevE.102.022502

45: Design and formation of SiC (0001)/SiO2 interfaces via Si deposition followed by low-temperature oxidation and high-temperature nitridation(Applied Physics Express, DOI:10.35848/1882-0786/ababed) Matsuahita Lab
https://doi.org/10.35848/1882-0786/ababed

46: Template-Free Synthesis of Mesoporous β-MnO2 Nanoparticles: Structure, Formation Mechanism, and Catalytic Properties (ACS Applied Materials & Interfaces; DOI:10.1021/acsami.0c08043) Hara-Kamata Lab
https://doi.org/10.1021/acsami.0c08043

47: Pair-Density-Wave in Charge/Spin-ordered High-Tc Cuprates (Nature Commun. 11, 3323 (2020); DOI:10.1038/s41467-020-17138-z) Sasagawa Lab
https://doi.org/10.1038/s41467-020-17138-z

48: Coherent control of 40-THz optical phonons in diamond using femtosecond optical pulses (Physical Review B DOI:10.1103/PhysRevB.101.174301)Nakamura Lab.
https://doi.org/10.1103/PhysRevB.101.174301

49: High mobility approaching the intrinsic limit in Ta-doped SnO2 films epitaxially grown on TiO2 (001) substrates (Scientific Reports DOI:10.1038/s41598-020-63800-3)Azuma-Yamamato Lab.
https://doi.org/10.1038/s41598-020-63800-3

50: Fuelling the World Sustainably: Synthesizing Ammonia using Less Energy(Nature Communications DOI:10.1038/s41467-020-15868-8)Hara-Kamata Lab.
https://doi.org/10.1038/s41467-020-15868-8

51: Sequential Spin State Transition and Intermetallic Charge Transfer in PbCoO3(Journal of the American Chemical Society DOI:10.1021/jacs.9b13508)Azuma Lab.
https://doi.org/10.1021/jacs.9b13508

52: Radial Spin Texture in Elemental Tellurium with Chiral Crystal Structure(Physical Review Letters DOI:10.1103/PhysRevLett.124.136404)Sasagawa Lab.
https://doi.org/10.1103/PhysRevLett.124.136404

53: Ferroelectric BaTaO2N Crystals Grown in a BaCN2 Flux
(Inorganic Chemistry DOI:10.1021/acs.inorgchem.9b02917)Itoh Lab.
https://doi.org/10.1021/acs.inorgchem.9b02917

54: Enhanced Negative Thermal Expansion Induced by Simultaneous Charge Transfer and Polar–Nonpolar Transitions(Journal of the American Chemical Society DOI:10.1021/jacs.9b10336)Azuma-Yamamoto Lab.
https://doi.org/10.1021/jacs.9b10336

55: Strain Manipulation of Magnetic Anisotropy in Room-Temperature Ferrimagnetic Quadruple Perovskite CeCu3Mn4O12(Applied Electronic Materials DOI:10.1021/acsaelm.9b00547)Azuma-Yamamoto Lab.
https://doi.org/10.1021/acsaelm.9b00547

56: Electronic structure of interstitial hydrogen in In-Ga-Zn-O semiconductor simulated by muon(Applied Physics Letters DOI:10.1063/1.5117771)Kamiya-Katase Lab.
https://doi.org/10.1063/1.5117771

57: 3D multiscale-imaging of processing-induced defects formed during sintering of hierarchical powder packings(Scientific Reports DOI:10.1038/s41598-019-48127-y)Wakai-Nishiyama Lab.
https://doi.org/10.1038/s41598-019-48127-y

58: Observation of Majorana Quasiparticles in Topological Superconducting Vortices (Nature Materials 18, 811 (2019).; DOI:10.1038/s41563-019-0397-1) Sasagawa Lab
https://doi.org/10.1038/s41563-019-0397-1

59: Exicitonic Effect (Doublon-holon Pairing) in Strongly Correlated Cuprates (Science Advances 5, eaav2187 (2019); 10.1126/sciadv.aav2187) Sasagawa Lab
https://doi.org/10.1126/sciadv.aav2187

60: Polar–Nonpolar Phase Transition Accompanied by Negative Thermal Expansion in Perovskite-Type Bi1–xPbxNiO3(Chemistry of Materials(2019), DOI:10.1021/acs.chemmater.9b00929) Azuma Lab
https://doi.org/10.1021/acs.chemmater.9b00929

61: Microstructural deformation process of shock-compressed polycrystalline aluminum (Scientific Reports(2019), DOI:10.1038/s41598-019-43876-2) Nakamura Lab
https://doi.org/10.1038/s41598-019-43876-2

62: A light matter: understanding the Raman dance of solids(Physical Review B, Rapid Communication(2019), DOI:10.1103/PhysRevB.99.180301)
Nakamura Lab
https://doi.org/10.1103/PhysRevB.99.180301

63: Material Design of Green-Light-Emitting Semiconductors: Perovskite-Type Sulfide SrHfS3(Journal of the American Chemical Society, DOI:10.1021/jacs.8b13622) Hiramatsu Lab
https://doi.org/10.1021/jacs.8b13622

64: Melting of dxy Orbital Ordering Accompanied by Suppression of Giant Tetragonal Distortion and Insulator-to-Metal Transition in Cr-Substituted PbVO3 (Chemistry of Materials, DOI:10.1021/acs.chemmater.8b04680)Azuma Lab
https://pubs.acs.org/doi/10.1021/acs.chemmater....

65: Enhancement of Ultrahigh Rate Chargeability by Interfacial Nanodot BaTiO3 Treatment on LiCoO2 Cathode Thin Film Batteries (Nanoletters,DOI:10.1021/acs.nanolett.8b04690) Itoh Lab
https://pubs.acs.org/doi/abs/10.1021%2Facs.nano...

66: Discovery of a "Weak" Topological Insulator with Switching-ability (Nature 566, 518 (2019); DOI:10.1038/s41586-019-0927-7) Sasagawa Lab
https://www.nature.com/articles/s41586-019-0927-7

67: Direct Observation of Magnetization Reversal by Electric Field at Room Temperature in Co-Substituted Bismuth Ferrite Thin Film (Nano Letters; DOI: 10.1021/acs.nanolett.8b04765) Azuma Lab, Oba Lab
https://pubs.acs.org/doi/10.1021/acs.nanolett.8...

68: Barium ruthenate:Green catalysts with Earth-abundant metals accelerate production of bio-based plastic (Journal of the American Chemical Society; DOI:10.1021/jacs.8b09917) Hara-Kamata Lab
https://pubs.acs.org/doi/10.1021/jacs.8b09917

69: Emergence of Superconductivity in the Cuprates via a Universal Percolation Process (Nature Communications 9, 4327 (2018);
DOI: 10.1038/s41467-018-06707-y) Sasagawa Lab
https://www.nature.com/articles/s41467-018-06707-y

70: Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides (ACS Applied Materials & Interfaces; DOI:10.1021/acsami.8b05343) Hara-Kamata Lab
https://pubs.acs.org/doi/10.1021/acsami.8b05343

71: A high performance catalyst of shape-specific ruthenium nanoparticles for production of primary amines by reductive amination of carbonyl compounds (Chemical Science; DOI:10.1039/C8SC01197D) Hara-Kamata Lab
http://pubs.rsc.org/en/Content/ArticleLanding/2...

72: Control of quantum state of optical phonon in diamond induced by ultrashort light pulses (Scientific Reports; DOI: 10.1038/s41598-018-27734-1 ) Nakamura Lab
https://www.nature.com/articles/s41598-018-27734-1

73: High‐Mobility p‐Type and n‐Type Copper Nitride Semiconductors by Direct Nitriding Synthesis and In Silico Doping Design
(Advanced Materials; DOI: 10.1002/adma.201801968)
Hosono-Hiramatsu Lab, Oba Lab
https://onlinelibrary.wiley.com/doi/abs/10.1002...

74: Colossal Negative Thermal Expansion in Electron‐Doped PbVO3 Perovskites (Angewandte Chemie International Edition; DOI:10.1002/anie.201804082)
Azuma Lab
https://onlinelibrary.wiley.com/doi/abs/10.1002...

75: Ubiquitous formation of bulk Dirac cones and topological surface states from a single orbital manifold in transition-metal dichalcogenides(Nature Materials 17, 21 (2018); DOI:10.1038/NMAT5031) Sasagawa Lab
http://www.nature.com/articles/nmat5031

76: Ferroelectric and Magnetic Properties in Room-Temperature Multiferroic GaxFe2−xO3 Epitaxial Thin Films(Advanced Functional Materials, 27, 1704789(2017), DOI:10.1002/adfm.201704789) Ito-Taniyama Lab
http://onlinelibrary.wiley.com/doi/10.1002/adfm...

77: Full-gap superconductivity in spin-polarised surface states of topological semimetal β-PdBi2 (Nature Communications 8, 976 (2017); DOI:10.1038/s41467-017-01209-9) Sasagawa Lab
https://www.nature.com/articles/s41467-017-01209-9

78: Electronic Effect of Ruthenium Nanoparticles on Efficient Reductive Amination of Carbonyl Compounds(Journal of the American Chemical Society;10.1021/jacs.7b04481) Hara-Kamata Lab
http://pubs.acs.org/doi/abs/10.1021/jacs.7b04481

79: Superconductivity in Alkaline Earth Metal-Filled Skutterudites BaxIr4X12 (X = As, P),(J. Am. Chem. Soc., , 139 (24), 8106–8109(2017))
Hosono Lab
http://pubs.acs.org/doi/abs/10.1021/jacs.7b04274

80: A-Site and B-Site Charge Orderings in an s–d Level Controlled Perovskite Oxide PbCoO3 (Journal of the American Chemical Society; 10.1021/jacs.7b01851) Azuma Lab
http://pubs.acs.org/doi/abs/10.1021/jacs.7b01851

81: Transparent ceramics make super-hard windows(Scientific Reports, 2017; 10.1038/srep44755)
Wakai & Nishiyama Lab
http://www.nature.com/articles/srep44755

82: A bifunctional cerium phosphate catalyst for chemoselective acetalization(Chemical Science; DOI:10.1039/C6SC05642C)
Hara&Kamata Lab
http://pubs.rsc.org/en/Content/ArticleLanding/2...

83: New material with ferroelectricity and ferromagnetism may lead to better computer memory(Advanced Materials, 2016)
Azuma Lab
http://onlinelibrary.wiley.com/doi/10.1002/adma...

84: Enhanced Piezoelectric Response due to Polarization Rotation in Cobalt-Substituted BiFeO3 Epitaxial Thin Films (Advanced Materials, 2016)
Azuma Lab
http://onlinelibrary.wiley.com/doi/10.1002/adma...

85: Discovery of earth-abundant nitride semiconductors by computational screening and high-ressure synthesis (Nature Communications, 2016) Oba Lab, Hosono-Kamiya-Hiramatsu Lab
http://dx.doi.org/10.1038/ncomms11962

86: Four times higher superconducting critical temperature of iron selenide(Proc. Natl. Acad. Sci. USA, Early Edition (2016))
Hosono, Kamiya, Hiramatsu Lab
http://dx.doi.org/10.1073/pnas.1520810113

87: Precisely Determining the Zeeman g-factor of Topological Surface Electrons (Nature Communications 7, 10829 (2016); doi:10.1038/ncomms10829)Sasagawa Lab
http://www.nature.com/ncomms/2016/160224/ncomms...

 

Past Research Results(2015)

Past Research Results(2012-2014)

Past Research Results(1990-2011)

Page Top