Top Page » Research Results

Research Results

1: Ferroelectric BaTaO2N Crystals Grown in a BaCN2 Flux
(Inorganic Chemistry DOI:10.1021/acs.inorgchem.9b02917)Itoh Lab.
https://doi.org/10.1021/acs.inorgchem.9b02917

2: Enhanced Negative Thermal Expansion Induced by Simultaneous Charge Transfer and Polar–Nonpolar Transitions(Journal of the American Chemical Society DOI:10.1021/jacs.9b10336)Azuma-Yamamoto Lab.
https://doi.org/10.1021/jacs.9b10336

3: Strain Manipulation of Magnetic Anisotropy in Room-Temperature Ferrimagnetic Quadruple Perovskite CeCu3Mn4O12(Applied Electronic Materials DOI:10.1021/acsaelm.9b00547)Azuma-Yamamoto Lab.
https://doi.org/10.1021/acsaelm.9b00547

4: Electronic structure of interstitial hydrogen in In-Ga-Zn-O semiconductor simulated by muon(Applied Physics Letters DOI:10.1063/1.5117771)Kamiya-Katase Lab.
https://doi.org/10.1063/1.5117771

5: 3D multiscale-imaging of processing-induced defects formed during sintering of hierarchical powder packings(Scientific Reports DOI:10.1038/s41598-019-48127-y)Wakai-Nishiyama Lab.
https://doi.org/10.1038/s41598-019-48127-y

6: Observation of Majorana Quasiparticles in Topological Superconducting Vortices (Nature Materials (2019), published online.; DOI:10.1038/s41563-019-0397-1) Sasagawa Lab
https://doi.org/10.1038/s41563-019-0397-1

7: Exicitonic Effect (Doublon-holon Pairing) in Strongly Correlated Cuprates (Science Advances 5, eaav2187 (2019); 10.1126/sciadv.aav2187) Sasagawa Lab
https://doi.org/10.1126/sciadv.aav2187

8: Polar–Nonpolar Phase Transition Accompanied by Negative Thermal Expansion in Perovskite-Type Bi1–xPbxNiO3(Chemistry of Materials(2019), DOI:10.1021/acs.chemmater.9b00929) Azuma Lab
https://doi.org/10.1021/acs.chemmater.9b00929

9: Microstructural deformation process of shock-compressed polycrystalline aluminum (Scientific Reports(2019), DOI:10.1038/s41598-019-43876-2) Nakamura Lab
https://doi.org/10.1038/s41598-019-43876-2

10: A light matter: understanding the Raman dance of solids(Physical Review B, Rapid Communication(2019), DOI:10.1103/PhysRevB.99.180301)
Nakamura Lab
https://doi.org/10.1103/PhysRevB.99.180301

11: Material Design of Green-Light-Emitting Semiconductors: Perovskite-Type Sulfide SrHfS3(Journal of the American Chemical Society, DOI:10.1021/jacs.8b13622) Hiramatsu Lab
https://doi.org/10.1021/jacs.8b13622

12: Melting of dxy Orbital Ordering Accompanied by Suppression of Giant Tetragonal Distortion and Insulator-to-Metal Transition in Cr-Substituted PbVO3 (Chemistry of Materials, DOI:10.1021/acs.chemmater.8b04680)Azuma Lab
https://pubs.acs.org/doi/10.1021/acs.chemmater....

13: Enhancement of Ultrahigh Rate Chargeability by Interfacial Nanodot BaTiO3 Treatment on LiCoO2 Cathode Thin Film Batteries (Nanoletters,DOI:10.1021/acs.nanolett.8b04690) Itoh Lab
https://pubs.acs.org/doi/abs/10.1021%2Facs.nano...

14: Discovery of a "Weak" Topological Insulator with Switching-ability (Nature 566, 518 (2019); DOI:10.1038/s41586-019-0927-7) Sasagawa Lab
https://www.nature.com/articles/s41586-019-0927-7

15: Direct Observation of Magnetization Reversal by Electric Field at Room Temperature in Co-Substituted Bismuth Ferrite Thin Film (Nano Letters; DOI: 10.1021/acs.nanolett.8b04765) Azuma Lab, Oba Lab
https://pubs.acs.org/doi/10.1021/acs.nanolett.8...

16: Barium ruthenate:Green catalysts with Earth-abundant metals accelerate production of bio-based plastic (Journal of the American Chemical Society; DOI:10.1021/jacs.8b09917) Hara-Kamata Lab
https://pubs.acs.org/doi/10.1021/jacs.8b09917

17: Emergence of Superconductivity in the Cuprates via a Universal Percolation Process (Nature Communications 9, 4327 (2018);
DOI: 10.1038/s41467-018-06707-y) Sasagawa Lab
https://www.nature.com/articles/s41467-018-06707-y

18: Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides (ACS Applied Materials & Interfaces; DOI:10.1021/acsami.8b05343) Hara-Kamata Lab
https://pubs.acs.org/doi/10.1021/acsami.8b05343

19: A high performance catalyst of shape-specific ruthenium nanoparticles for production of primary amines by reductive amination of carbonyl compounds (Chemical Science; DOI:10.1039/C8SC01197D) Hara-Kamata Lab
http://pubs.rsc.org/en/Content/ArticleLanding/2...

20: Control of quantum state of optical phonon in diamond induced by ultrashort light pulses (Scientific Reports; DOI: 10.1038/s41598-018-27734-1 ) Nakamura Lab
https://www.nature.com/articles/s41598-018-27734-1

21: High‐Mobility p‐Type and n‐Type Copper Nitride Semiconductors by Direct Nitriding Synthesis and In Silico Doping Design
(Advanced Materials; DOI: 10.1002/adma.201801968)
Hosono-Hiramatsu Lab, Oba Lab
https://onlinelibrary.wiley.com/doi/abs/10.1002...

22: Colossal Negative Thermal Expansion in Electron‐Doped PbVO3 Perovskites (Angewandte Chemie International Edition; DOI:10.1002/anie.201804082)
Azuma Lab
https://onlinelibrary.wiley.com/doi/abs/10.1002...

23: Ubiquitous formation of bulk Dirac cones and topological surface states from a single orbital manifold in transition-metal dichalcogenides(Nature Materials 17, 21 (2018); DOI:10.1038/NMAT5031) Sasagawa Lab
http://www.nature.com/articles/nmat5031

24: Ferroelectric and Magnetic Properties in Room-Temperature Multiferroic GaxFe2−xO3 Epitaxial Thin Films(Advanced Functional Materials, 27, 1704789(2017), DOI:10.1002/adfm.201704789) Ito-Taniyama Lab
http://onlinelibrary.wiley.com/doi/10.1002/adfm...

25: Full-gap superconductivity in spin-polarised surface states of topological semimetal β-PdBi2 (Nature Communications 8, 976 (2017); DOI:10.1038/s41467-017-01209-9) Sasagawa Lab
https://www.nature.com/articles/s41467-017-01209-9

26: Electronic Effect of Ruthenium Nanoparticles on Efficient Reductive Amination of Carbonyl Compounds(Journal of the American Chemical Society;10.1021/jacs.7b04481) Hara-Kamata Lab
http://pubs.acs.org/doi/abs/10.1021/jacs.7b04481

27: Superconductivity in Alkaline Earth Metal-Filled Skutterudites BaxIr4X12 (X = As, P),(J. Am. Chem. Soc., , 139 (24), 8106–8109(2017))
Hosono Lab
http://pubs.acs.org/doi/abs/10.1021/jacs.7b04274

28: A-Site and B-Site Charge Orderings in an s–d Level Controlled Perovskite Oxide PbCoO3 (Journal of the American Chemical Society; 10.1021/jacs.7b01851) Azuma Lab
http://pubs.acs.org/doi/abs/10.1021/jacs.7b01851

29: Transparent ceramics make super-hard windows(Scientific Reports, 2017; 10.1038/srep44755)
Wakai & Nishiyama Lab
http://www.nature.com/articles/srep44755

30: A bifunctional cerium phosphate catalyst for chemoselective acetalization(Chemical Science; DOI:10.1039/C6SC05642C)
Hara&Kamata Lab
http://pubs.rsc.org/en/Content/ArticleLanding/2...

31: New material with ferroelectricity and ferromagnetism may lead to better computer memory(Advanced Materials, 2016)
Azuma Lab
http://onlinelibrary.wiley.com/doi/10.1002/adma...

32: Enhanced Piezoelectric Response due to Polarization Rotation in Cobalt-Substituted BiFeO3 Epitaxial Thin Films (Advanced Materials, 2016)
Azuma Lab
http://onlinelibrary.wiley.com/doi/10.1002/adma...

33: Discovery of earth-abundant nitride semiconductors by computational screening and high-ressure synthesis (Nature Communications, 2016) Oba Lab, Hosono-Kamiya-Hiramatsu Lab
http://dx.doi.org/10.1038/ncomms11962

34: Four times higher superconducting critical temperature of iron selenide(Proc. Natl. Acad. Sci. USA, Early Edition (2016))
Hosono, Kamiya, Hiramatsu Lab
http://dx.doi.org/10.1073/pnas.1520810113

35: Precisely Determining the Zeeman g-factor of Topological Surface Electrons (Nature Communications 7, 10829 (2016); doi:10.1038/ncomms10829)Sasagawa Lab
http://www.nature.com/ncomms/2016/160224/ncomms...

 

Past Research Results(2015)

Past Research Results(2012-2014)

Past Research Results(1990-2011)

Page Top